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Abstract

Cloud removal (CR) remains a challenging task in remote
sensing image processing. Although diffusion models (DM)
exhibit strong generative capabilities, their direct applica-
tions to CR are suboptimal, as they generate cloudless im-
ages from random noise, ignoring inherent information in
cloudy inputs. To overcome this drawback, we develop a
new CR model EMRDM based on mean-reverting diffusion
models (MRDMs) to establish a direct diffusion process be-
tween cloudy and cloudless images. Compared to current
MRDMs, EMRDM offers a modular framework with updat-
able modules and an elucidated design space, based on a
reformulated forward process and a new ordinary differen-
tial equation (ODE)-based backward process. Leveraging
our framework, we redesign key MRDM modules to boost
CR performance, including restructuring the denoiser via
a preconditioning technique, reorganizing the training pro-
cess, and improving the sampling process by introducing
deterministic and stochastic samplers. To achieve multi-
temporal CR, we further develop a denoising network for si-
multaneously denoising sequential images. Experiments on
mono-temporal and multi-temporal datasets demonstrate
the superior performance of EMRDM. Our code is avail-
able at https://github.com/Ly403/EMRDM .

1. Introduction
Satellite imagery, as a fundamental remote sensing prod-
uct [68, 72], enables diverse applications including envi-
ronmental monitoring [59], land cover classification [34],
and agricultural monitoring [48]. However, cloud coverage
severely affects the usability of satellite imagery. Data anal-
ysis for the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) on the Terra and Aqua satellites indicates that
about 67% of the Earth’s surface experiences cloud cover-
age [33]. Hence, cloud removal (CR) is a critical prelimi-
nary step in processing satellite imagery.
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Figure 1. Comparison of EMRDM (c) with generative DMs (a)
and MRDMs (b). Here, target is the cloudless image, pred is the
CR prediction result, mean is the cloudy image, and noisy mean
is the noisy cloudy image. The forward processes of (a), (b), and
(c) generate diffused images approximated by noise (for DMs) and
noisy mean (for EMRDM and MRDMs), respectively.

Recent advances in deep learning have driven the
progress of CR [62], with generative adversarial networks
(GANs) [20] becoming a predominant approach. However,
the effectiveness of GANs in CR is undermined by train-
ing instability [51] and mode collapse [3]. In comparison,
diffusion models (DMs) [23, 55, 56] can overcome these
limitations via enhanced training stability and output diver-
sity, setting new benchmarks in image synthesis [11] and
restoration [36]. Such advantages of DMs also extend to
CR tasks [29, 58, 71, 74].

Existing diffusion-based CR methods typically employ
vanilla DM frameworks that start the diffusion process
from pure noise (Fig. 1 (a)). However, this is unnecessary
as cloudy images contain substantial unexploited informa-
tion. Even worse, noise-initiated generation lacks pixel-
level consistency, inducing distortion [6] in restored images
due to poor fine-grained controllability. To resolve this, we
propose the integration of mean-reverting diffusion models
(MRDMs) [41] into CR. MRDMs start the diffusion pro-
cess directly from noisy cloudy images (Fig. 1 (b)), intrinsi-
cally preserving structural fidelity through pixel-level con-
sistency constraints. Specifically, the forward process pro-
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gressively diffuses the target image by injecting noise while
maintaining the cloudy image as the distribution mean,
yielding a noisy cloudy image (noisy mean). Subsequent
denoising in the backward process reconstructs the cloud-
less image (pred) while preserving structural consistency.

However, current MRDMs exhibit limitations due to
their intricately coupled modules and opaque relationships
among modules, impeding their application. Inspired by
the successful designs of EDM [31] in image generation,
we conduct an in-depth analysis of the underlying mathe-
matical principles of MRDMs to clarify the roles and in-
terrelationships of modules within the MRDM framework.
Based on these insights, we Elucidate the design space of
MRDMs and propose a novel MRDM-based CR model,
termed EMRDM. EMRDM offers a modular framework
by reformulating the forward process through a stochastic
differential equation (SDE) with simplified parameters and
introducing an ordinary differential equation (ODE)-based
backward process, as illustrated in Fig. 1 (c). The frame-
work offers two critical advantages: (1) an elucidated and
flexible design space enabling orthogonal module modifica-
tions, and (2) seamless compatibility with generative DMs.
Leveraging the advantages of our framework, we further
redesign key MRDM modules to boost CR performance,
focusing on the following enhancements: (1) We restruc-
ture the denoiser via a preconditioning technique, inspired
by image generation methods [31, 57], to adaptively scale
inputs and outputs of the denoising network according to
noise levels. (2) We reorganize the training process and
improve the sampling process. For practical sampling of
CR results, we introduce novel deterministic and stochastic
samplers based on the improved sampling process.

To achieve multi-temporal CR, we further develop a de-
noising network that processes arbitrary-length image se-
quences. Specifically, for L sequential cloudy images, our
architecture employs L weight-sharing encoders and bot-
tleneck modules, compresses temporal features through a
novel attention block, and reconstructs outputs via a sin-
gle decoder. The generated attention masks are preserved
and upsampled to various resolutions, serving as adaptive
weights to fuse temporal skip feature maps. The precondi-
tioning and training methods are modified to accommodate
multi-temporal scenarios through sequential input compat-
ibility optimization. During sampling, to ensure temporal
restoration consistency, we independently restore each tem-
poral instance under mono-temporal conditions and aggre-
gate results through a mean fusion operator (Fig. 1 (c)).

Our contributions are summarized as follows:

1) We propose a novel CR model EMRDM that offers a
modular framework with updatable modules and an elu-
cidated design space.

2) We develop a multi-temporal network with a temporal fu-
sion method to denoise arbitrary-length image sequences.

3) We restructure the denoiser via a preconditioning method,
improve training and sampling processes, and propose
novel stochastic and deterministic samplers.

4) Experiments on mono-temporal and multi-temporal cases
demonstrate the superior CR performance of EMRDM.

2. Related Work

Cloud Removal. CR methods are primarily divided into
traditional methods [37, 64, 65] and deep learning-based
methods, with the former offering better interpretability
but generally inferior performance compared to data-driven
methods. Deep learning-based methods are further catego-
rized into mono-temporal [4, 15–17, 21, 35, 43, 45, 63, 74]
and multi-temporal [14, 15, 24, 52, 71, 74] paradigms
based on single-image or sequential inputs. Mono-temporal
methods commonly employ vanilla conditional GANs
(cGANs) [20, 44] in early applications [4, 16, 21], with
improvements including spatial attention [45] and trans-
former architectures [35]. Alternative frameworks include
DMs [74] and non-generative models [15, 43, 63]. Multi-
temporal strategies mainly use temporal cGAN [24, 52],
temporal fusion attention (e.g., L-TAE [18, 19]) as in [15],
and sequential DMs [71]. CR methods are also classified as
mono-modal [16, 45, 74] or multi-modal, depending on the
use of auxiliary modalities, including infrared (IR) and syn-
thetic aperture radar (SAR) images. Multi-modal methods
involve modality concatenation [4, 14, 15, 21, 24, 43, 52]
and specialized fusion modules [17, 63, 71].
Diffusion Models. Recent advances in generative modeling
have witnessed DMs [23, 55, 56] surpass GANs [11] in im-
age synthesis. Notable improvements to DMs [9, 31, 46, 47]
have also been proposed, with EDM [31] and HDiT [9]
most crucial to our work. EDM presents a framework that
delineates the specific design decisions for DM compo-
nents, while HDiT introduces an efficient hourglass diffu-
sion transformer. Inspired by the success of DMs in image
generation, extensive studies have investigated their appli-
cations in image restoration [36]. These methods can be
categorized as supervised learning [1, 10, 38, 39, 41, 42, 49,
50, 61, 69] or zero-shot learning [8, 32, 40, 54, 60]. In the
first category, several methods focus on generating images
directly from noiseless or noisy corrupted images, such as
IR-SDE [41], InDI [10], ResShift [69], RDDM [39], and
I2SB [38]. Considering that starting with pure noise is in-
efficient, IR-SDE, InDI, ResShift, and RDDM all integrate
the corrupted image and noise within the diffusion process.
We extend this paradigm and apply it to CR.

3. Methodology

As illustrated in Fig. 2, we introduce the EMRDM frame-
work in Sec. 3.2, propose a novel multi-temporal denoising
network in Sec. 3.3, restructure the denoiser by the precon-
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Figure 2. (a) The EMRDM framework comprises a forward
process and a backward process that contains a denoiser. (b)
The denoiser consists primarily of a denoising network, where
the preconditioning module generates reparameterized factors
cin (σ) , cout (σ) , cskip (σ) , cnoise (σ) based on noise level σ(t). We
show the multi-temporal condition with the sequence length L.

ditioning technique in Sec. 3.4, and present our redesigned
training and sampling process in Sec. 3.5.

3.1. Preliminary
The forward process of DMs can be expressed as an SDE
proposed by Song et al. (Eq. 5 in [56]), as follows:

dx = f(x, t)dt+ g(t)dωt, (1)

where ωt is a standard Brownian motion, x ∈ Rd is an Itô
process, f(·, t) : Rd → Rd and g(·) : R → R are the
drift and diffusion coefficients, respectively, and d is the di-
mensionality of images. Song et al. further derive a reverse
probability flow ODE (Eq. 13 in [56]) for sampling as

dx =

[
f(x, t)− 1

2
g(t)

2∇x log pt(x)

]
dt, (2)

where pt(x) is the probability density function (pdf) of x
at time t. The score function∇x log pt(x) is predicted by a
neural network. Therefore, the models proposed by [56], as
well as our models, are score matching models.

3.2. The EMRDM Framework
We reformulate the forward process of MRDMs to construct
a stochastic process {x(t)}Tt=0 that transforms a target im-

age into its noisy cloudy counterpart. The new ODE-based
backward process iteratively denoises the corrupted images.
Forward Process. We transform the SDE in Eq. (1) into

dx = f(t)(x− µ)dt+ g(t)dωt, (3)

where µ ∈ Rd is the cloudy image, and the stochastic pro-
cess x(t) is simplified to x. According to [41], Eq. (3)
can be viewed as a special case of Eq. (1) by defining
f(x, t) = f(t)(x − µ). This setting yields a solution for
the pdf of x(t) given x(0) and µ:

p0t
(
x(t) | x(0),µ

)
= s(t)

−d
p̃0t
(
x̃(t) | x̃0(t)

)
, (4)

p̃0t
(
x̃(t) | x̃0(t)

)
= N

(
x(t)

s(t)
; x̃0(t), σ(t)

2
I

)
, (5)

x̃0(t) = x(0) +
1− s(t)

s(t)
µ, (6)

where N (x;m,Σ) denotes the Gaussian pdf evaluated at
x, with mean m and covariance Σ. We define x̃(t) =
x(t)/s(t). The values of s(t) and σ(t) are as follows:

s(t) = exp

(∫ t

0

f(ξ)dξ

)
, σ(t) =

√∫ t

0

g(ξ)
2

s(ξ)
2 dξ. (7)

In our framework, s(t) and σ(t) are used instead of f(t)
and g(t) for the design simplicity. By introducing the mean-
adding term, i.e., 1−s(t)

s(t) µ, in Eq. (6), the mean of x̃(t) ap-
proximately shifts to µ, unlike generative DMs with a final
mean of zero. Hence, the SDE in Eq. (3) is named the mean-
reverting SDE. Concretely:
• At t = 0, it is obvious that s(0) = 1 and σ(0) = 0,

ensuring x̃(0) = x̃0(0) = x(0).
• At a large t = T , we require 1−s(T )

s(T ) to be large enough
to obscure x(0), ensuring that x̃(T ) has a mean almost
proportional to µ and a standard variance equal to σ(T ).

With the techniques above, we establish a diffusion process
that bridges the target image x(0) and the cloudy image µ
with noise n, ensuring pixel-level fidelity in CR outputs.
Notably, by omitting the mean-adding term (i.e., setting
s(t) = 1), the EMRDM framework reduces to the genera-
tive DM in [31]. Hence, our framework expands the bound-
ary of generative DMs.

See Appendix A.1 for derivations of the forward process.
Backward Process. We use s(t) and σ(t) to derive the
backward ODE. Based on Eq. (2), we have

dx̃(t) =

[
−

ṡ(t)

s(t)
2µ− σ̇(t)σ(t)sθ

(
x̃(t)

)]
dt, (8)

where sθ
(
x̃(t)

)
= ∇x̃(t) log pt

(
x̃(t)

)
is the score func-

tion [27], a vector field pointing to the higher density of
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data, with θ as its parameters. As sθ
(
x̃(t)

)
does not depend

on the intractable form of log pt
(
x̃(t)

)
[27], it can be easily

calculated. We use a denoiser function Dθ(x;σ; c) to pre-
dict it, with x as the image input, σ as the noise level input,
and c as the conditioning input. By training Dθ as follows:

L
(
Dθ, σ(t)

)
=Ex̃0(t)∼pdataEn∼N(0,σ(t)2I)

∥Dθ

(
x̃0(t) + n;σ(t); c

)
− x̃0(0)∥

2

2
,

(9)

with pdata as the distribution of x̃0(t), we can acquire

sθ
(
x̃(t)

)
=

Dθ

(
x̃(t);σ(t); c

)
+ 1−s(t)

s(t) µ− x̃(t)

σ(t)
2 . (10)

Though it is common to directly use a neural network as
the denoiser Dθ, it is suboptimal for stable and effective
training, as explained in Sec. 3.3. Hence, as shown in Fig. 2,
we restructure Dθ by training a different network Fθ via the
preconditioning technique. Sec. 3.3 provides details on Fθ,
while the relationship between Fθ and Dθ is discussed in
Sec. 3.4. By substituting Eq. (10) into Eq. (8), we obtain

dx̃(t) =

[
−

ṡ(t)

s(t)
2µ−

σ̇(t)

σ(t)
×(

Dθ

(
x̃(t);σ(t); c

)
+

1− s(t)

s(t)
µ− x̃(t)

)]
dt.

(11)

See Appendix A.2 for the proof of Eqs. (8) to (11). We re-
design the samplers based on this ODE, detailed in Sec. 3.5.
Generally, as depicted in Fig. 2 (a), at time T , the samplers
iteratively use Dθ to estimate x(0). The output x̂(0) is used
in Eq. (11) to compute the next-step image x̃(T − 1) for N
steps, ultimately restoring the image.
Choices of s(t) and σ(t). It is essential to ensure σ(0) = 0

and limt→0
1−s(t)
s(t) = 0. We adopt the linear choice σ(t) = t

according to [31], and set s(t) = 1
1+αt , where α controls

the mean reversion rate. Such settings yield a simpler SDE
parameterization compared to prior MRDMs [41].

3.3. Multi-temporal Denoising Network
Network Architecture. For mono-temporal CR, previous
improvements to the denoising network [2, 9, 46] can be di-
rectly used, as it is orthogonal to other modules. We choose
HDiT [9] for effectiveness and efficiency. To adapt HDiT to
CR tasks, we reset the input channels and remove the non-
leaking augmentation [30] and classifier-free guidance [22],
as they are unsuitable for restoration. Following [49], we
concatenate the noisy cloudy image x̃0(t)+n with the con-
dition c. The condition includes cloudy images and optional
auxiliary modal images (e.g., SAR or IR images).

To extend HDiT to multi-temporal CR tasks, we propose
a new denoising network based on UTAE [19] to denoise se-
quential images. As shown in Fig. 3 (a), we retain the main

architecture of HDiT and create L weight-sharing copies of
the encoder and middle HDiT blocks 3, while keeping the
decoder unchanged. In the bottleneck module, we introduce
a temporal HDiT block (THDiT), allowing sequential fea-
ture maps to be condensed into one map. Attention masks
are generated from THDiT and used to collapse the tempo-
ral dimension of the skip feature maps per resolution:

oi = Concat

[
L∑

l=1

bilinear(agl , i)⊙ ei,gl

]G
g=1

, (12)

where oi is the output skipping feature map to the decoder at
resolution level i, agl is the attention mask at head g and time
l, ei,gl is the input feature map from the encoder at head g,
time l and resolution level i, G is the number of heads, ⊙ is
the element-wise multiplication, and bilinear(·, i) indicates
upsampling the map from the lowest resolution to level i.
Temporal HDiT Block. THDiT is modified from the orig-
inal HDiT block. As shown in Fig. 3 (b), we replace spatial
attention with our proposed temporal fusion self-attention
(TFSA) to merge sequential feature maps and generate at-
tention masks. We also introduce rearrangement layers to
ensure that the feature maps have the correct shape before
entering different blocks. As the temporal dimension col-
lapses after TFSA, we remove the residual connection.
Temporal Fusion Self-Attention. As shown in Fig. 3 (c),
TFSA adopts vanilla multi-head self-attention. Following
L-TAE [18], we define query, key and value matrices as
Q ∈ R1×dk ,K = XW ∈ RL×dk ,V = X ∈ RL×C ,
respectively. Here, we consider a single-head scenario and
omit the batch size dimension for simplicity. The feature
map X has a sequence length of L and C channels. Both
Q and K have dk channels. We use X as V , and project
it to K with weights W ∈ RC×dk . Q is set as a learnable
parameter and initialized from a normal distribution, with a
sequence length of 1 to condense the temporal information.

3.4. Preconditioning
In this section, we restructure the denoiser via the precondi-
tioning technique to adaptively scale inputs and outputs ac-
cording to noise variance σ(t), focusing on multi-temporal
CR, with the mono-temporal case covered by setting L = 1.
We use the superscript l to represent the time point.

For training a network, it is advisable to maintain both
inputs and outputs with unit variance [5, 25], thus stabiliz-
ing and enhancing the training process. While directly train-
ing denoiser Dθ is not ideal for this purpose, we train a net-
work Fθ instead via the preconditioning technique to scale
inputs and outputs to unit variance, following EDM [31].
As shown in Fig. 2 (b), the relation between Dθ and Fθ is:

Dθ

(
{x̃l}Ll=1;σ; c

)
= mean

(
{cskip (σ) x̃

l}Ll=1

)
+ cout (σ)Fθ

(
{cin (σ) x̃

l}Ll=1; cnoise (σ) ; c
)
,

(13)
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where σ(t) is simplified to σ and x̃(t)l is simplified to x̃l.
The output shape of Fθ differs from the input shape, which
requires a mean operator to reduce the temporal dimension
of {cskip (σ) x̃

l}Ll=1. As our network can process sequential
images, {cin (σ) x̃

l}Ll=1 does not need the mean operator. To
ensure that inputs and targets have unit variance, we intro-
duce four factors cin (σ), cskip (σ), cout (σ) and cnoise (σ) to
scale the inputs and outputs governed by four hyperparame-
ters: σdata (the variance of target images), σmu (the variance
of cloudy images), σcov (the covariance between target and
cloudy images), and L (sequence length):

cin(σ) =
1√

σ2
data + k2σ2

mu + σ2 + 2kσcov
, (14)

cskip(σ) =
σ2

data + kσcov

σ2
data + k2σ2

mu +
σ2

L + 2kσcov
, (15)

cout(σ) =

√
k2σ2

muσ
2
data +

σ2

L σ2
data − k2σ2

cov

σ2
data + k2σ2

mu +
σ2

L + 2kσcov
, (16)

cnoise(σ) =
1

4
ln(σ), (17)

where k represents k(t), and k(t) = 1−s(t)
s(t) . Notably, set-

ting σmu = σcov = 0 reverts Eqs. (14) to (17) to their origi-
nal form in EDM. See Appendix A.3 for derivations.

3.5. Training and Sampling
This section details the training and sampling processes un-
der the multi-temporal scenario, with the mono-temporal
case covered by setting L = 1.
Training. The training process is detailed in Algorithm 1.
We retain the training distribution of σ in [31] (line 2). Se-
quential images are then independently perturbed (lines 4
to 6) and denoised jointly (line 7). We further introduce a
parameter λ (σ) to adjust the loss function at different noise
levels during training (line 9):

Eσ,x(0),n

[
λ
∥∥∥Dθ

(
{x̃l

0 + n}Ll=1;σ, c
)
− x(0)

∥∥∥2
2

]
, (18)

where λ and x̃l
0 represent λ (σ) and x̃l

0(t), respectively. We
set λ(σ) = 1

cout(σ)
2 , in accordance with EDM [31].

Sampling. As outlined in Algorithm 2, we design a stochas-
tic sampler. It begins with the sequential sampling of noisy
images (lines 2 to 3). Within the sampling loop, γi is com-
puted (line 5) to perturb the time ti to a higher noise level t̂i
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Algorithm 1 Our training step with s(t) = 1/(1 + αt) and
σ(t) = t.

1: procedure TRAINSTEP(x(0), {µl}Ll=1, c,Dθ)
2: sample ln(σ) ∼ N (Pmean, P 2

std)

3: σ ← exp
(
ln(σ)

)
4: for l ∈ {1, 2, · · · , L} do
5: sample nl ∼ N (0, I)

6: x̃l
0(t)← x(0) + ασµl, x̃l(t)← x̃l

0(t) + σnl

7: x̂(0)← Dθ

(
{x̃l(t)}Ll=1;σ; c

)
▷ Eq. (13)

8: Take gradient descent step on
9: ∇xEσ,x(0),n

[
λ(σ)∥x̂(0)− x(0)∥22

]
▷ Eq. (18)

Algorithm 2 Our stochastic sampler with s(t) =
1/(1 + αt) and σ(t) = t.

1: procedure STOCHASTICSAMPLER({µl}Ll=1, c,Dθ)
2: for l ∈ {1, 2, · · · , L} do
3: sample xl

0 ∼ N (ασµl, σ2I)

4: for i ∈ {0, 1, · · · , N − 1} do
5: γi ← Schurn/N if ti ∈ [Stmin, Stmax] else 0
6: t̂i ← ti + γiti
7: for l ∈ {1, 2, · · · , L} do
8: sample ϵli ∈ N

(
0, S2

noiseI
)

9: x̂l
i ← xl

i + α(t̂i − ti)µ
l +

√
t̂2i − t2i ϵ

l
i ▷ Eq. (19)

10: for l ∈ {1, 2, · · · , L} do
11: dl

i ←
(
x̂l
i −Dθ

(
{x̂l

i}Ll=1;σ; c
))

/t̂i ▷ Eq. (11)

12: xl
i+1 ← x̂l

i + (ti+1 − t̂i)d
l
i

13: xN ← mean
(
{xl

N}
L
l=1

)
14: return xN

(line 6). Updated samples x̂l
i at noise level t̂i are obtained:

x̂l
i = xl

i+
(
k(t̂i)− k(ti)

)
µl+

√
σ(t̂i)2 − σ(ti)2ϵ

l
i, (19)

where ϵli denotes Gaussian noise. The Euler step (lines 10
to 12) based on Eq. (11) computes the next sample xl

i+1 for
each l. The loop ends with a mean operator to collapse the
temporal dimension of {xl

N}Ll=1. The method includes fol-
lowing hyperparameters: N , Schurn, Stmin, Stmax and Snoise,
as in EDM. N is the number of sample steps. Schurn, Stmin
and Stmax control γi, while Snoise regulates the variance of
ϵli. The stochastic sampler becomes deterministic when set-
ting Schurn = 0. In addition, we should set a range for
σ when sampling. In other words, σ(tN−1) = σmax and
σ(t0) = σmin. Both σmax and σmin are also hyperparame-
ters. The intermediate σ values are interpolated following
EDM (Eq. 5 in [31]). See Appendix A.4 for more details.

4. Performance Evaluation
4.1. Implementation Details
We conduct experiments on four datasets: CUHK-
CR1 [58], CUHK-CR2 [58] and SEN12MS-CR [13] for

Table 1. Quantitative results on (a) CUHK-CR1, (b) CUHK-CR2,
(c) SEN12MS-CR, and (d) Sen2 MTC New datasets. The metrics
align with those used in prior studies on these datasets. The sym-
bols ↑/↓ indicate that higher/lower values correspond to better per-
formance. The best results are highlighted in red bold underline,
while the second-best results are marked in blue bold. Dashed
lines separate diffusion-based approaches from others.

Method (a) CUHK-CR1 (b) CUHK-CR2
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

SpA-GAN [45] 20.999 0.5162 0.0830 19.680 0.3952 0.1201
AMGAN-CR [66] 20.867 0.4986 0.1075 20.172 0.4900 0.093
CVAE [12] 24.252 0.7252 0.1075 22.631 0.6302 0.0489
MemoryNet [70] 26.073 0.7741 0.0315 24.224 0.6838 0.0403
MSDA-CR [67] 25.435 0.7483 0.0374 23.755 0.6661 0.0433
DE-MemoryNet [58] 26.183 0.7746 0.0290 24.348 0.6843 0.0369
DE-MSDA [58] 25.739 0.7592 0.0321 23.968 0.6737 0.0372
Ours (EMRDM) 27.281 0.8007 0.0218 24.594 0.6951 0.0301
(c) SEN12MS-CR PSNR↑ SSIM↑ MAE↓ SAM↓
McGAN [16] 25.14 0.744 0.048 15.676
SAR-Opt-cGAN [21] 25.59 0.764 0.043 15.494
SAR2OPT [4] 25.87 0.793 0.042 14.788
SpA GAN [45] 24.78 0.754 0.045 18.085
Simulation-Fusion GAN [17] 24.73 0.701 0.045 16.633
DSen2-CR [43] 27.76 0.874 0.031 9.472
GLF-CR [63] 28.64 0.885 0.028 8.981
UnCRtainTS L2 [15] 28.90 0.880 0.027 8.320
ACA-Net [26] 29.78 0.896 0.025 7.770
DiffCR [74] 31.77 0.902 0.019 5.821
Ours (EMRDM) 32.14 0.924 0.018 5.267
(d) Sen2 MTC New PSNR↑ SSIM↑ LPIPS↓
McGAN [16] 17.448 0.513 0.447
Pix2Pix [28] 16.985 0.455 0.535
AE [53] 15.100 0.441 0.602
STNet [7] 16.206 0.427 0.503
DSen2-CR [43] 16.827 0.534 0.446
STGAN [52] 18.152 0.587 0.513
CTGAN [24] 18.308 0.609 0.384
SEN12MS-CR-TS Net [14] 18.585 0.615 0.342
PMAA [73] 18.369 0.614 0.392
UnCRtainTS [15] 18.770 0.631 0.333
DDPM-CR [29] 18.742 0.614 0.329
DiffCR [74] 19.150 0.671 0.291
Ours (EMRDM) 20.067 0.709 0.255

mono-temporal CR tasks; and Sen2 MTC New [24] for
multi-temporal CR tasks with L = 3. MAE, PSNR, SSIM,
SAM, and LPIPS are used as evaluation metrics. We move
more implementation details to Appendix C.1.

4.2. Performance Comparison
All quantitative results are illustrated in Tab. 1 using the
optimal configuration for each model for a fair compari-
son. EMRDM surpasses all previous methods across all
datasets and metrics, demonstrating its superiority. On the
SEN12MS-CR dataset containing multi-spectral optical and
auxiliary SAR images, EMRDM achieves significant im-
provements over existing methods. This validates its ca-
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Cloudy SAR Target McGAN SpA GAN DSen2-CR GLF-CR UnCRtainTS L2 Ours

(a)

Target McGAN Pix2Pix STGAN CTGAN PMAA UnCRtainTS σ DiffCR Ours l=1  l=2  l=3
Cloudy and IR

(b)

Cloudy Target MemoryNet MSDA-CR DE-MemoryNet Ours

(c)

Cloudy Target MemoryNet MSDA-CR DE-MemoryNet Ours

(d)

Figure 4. (a) SEN12MS-CR dataset results: RGB channels for optical imagery (linearly enhanced for visualization) and VV channel for
SAR imagery. GLF-CR results are obtained by combining four separately processed subimages as it processes 128×128 images (256×256
for others). (b) Sen2 MTC New dataset results. (c,d) RGB channel results on CUHK-CR1 and CUHK-CR2 datasets, respectively.

pability to exploit SAR’s all-weather imaging characteris-
tics and effectively process multi-spectral inputs. On the
CUHK-CR1, CUHK-CR2, and Sen2 MTC New datasets
that mainly consist of RGB channels, EMRDM attains
remarkable results across perceptual quality (LPIPS) and
structural consistency metrics (SSIM, PSNR). Notably, it
maintains performance superiority on the CUHK-CR1/CR2
datasets without auxiliary modalities, demonstrating robust
CR capabilities with limited information. EMRDM further
exhibits strong multi-temporal processing capability, as ev-
idenced by leading metrics on the Sen2 MTC New dataset.
The visual results in Fig. 4 further prove the superior CR
quality of EMRDM. In particular, when the input images
are heavily cloud-covered, our model restores better tex-
tures, crucial for subsequent tasks after CR.

4.3. Ablation Study& Parameter Effect

Effects of Modules. We conduct ablation studies on key
modules, as outlined in Tab. 2, using models trained for
500 epochs with a deterministic sampler, setting N = 5,
σdata = 1.0, σmin = 0.001 and σmax = 100 for a fair com-
parison. The baseline (config A ) sets s(t) = 1, reducing

Table 2. We conducted an ablation study on the Sen2 MTC New
dataset to evaluate our method by incrementally adding modules.

Training configuration PSNR↑ SSIM↑MAE↓ SAM↓ LPIPS↓

A Baseline (s(t) = 1) 12.81 0.342 0.204 13.005 0.718
B + Corrupted images 18.26 0.649 0.109 6.526 0.311
C + IR images 19.31 0.677 0.095 6.547 0.279
D + Our MRDM framework 19.52 0.679 0.092 6.551 0.278
E + Our preconditioning 19.47 0.693 0.093 6.390 0.267

our method to generative DMs, with only noise images as
inputs. Config B and C incorporate cloudy and IR images,
respectively. The results demonstrate their essential roles
as conditioning inputs. Config D verifies the effectiveness
of the EMRDM framework in Sec. 3.2 with s(t) = 1

1+t
and σmu = σcov = 0. Incorporating preconditioning tech-
niques proposed in Sec. 3.4 in config E , with σmu = 1.0,
σcov = 0.9, results in improved performance.
Effects of α, σmax and N . Tab. 3 presents the results while
varying key parameters. Each model is trained for 500
epochs, with σdata = σmu = 1.0 and σcov = 0.9. We use a
deterministic sampler with σmin = 0.001. For α, which con-
trols the ratio of µ and n in the forward process, it yields the
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Table 3. Hyperparameter analysis on the Sen2 MTC New dataset.

Configurations Metrics
α σmax N PSNR↑ SSIM↑ MAE↓ SAM↓ LPIPS↓

0.2

100.0 5

19.34 0.692 0.095 6.306 0.269
0.5 19.14 0.675 0.097 6.580 0.283
0.8 19.90 0.689 0.088 6.249 0.260
1.0 19.44 0.688 0.091 6.367 0.273
2.0 19.77 0.704 0.087 5.922 0.262
3.0 20.00 0.708 0.084 5.710 0.255
4.0 19.76 0.695 0.087 5.821 0.263

3.0

40

5

19.58 0.701 0.087 5.764 0.260
60 19.88 0.706 0.085 5.733 0.257
80 19.96 0.707 0.084 5.726 0.256

100 20.00 0.708 0.084 5.710 0.255
150 20.03 0.707 0.085 5.730 0.256
200 20.03 0.707 0.085 5.723 0.256
300 20.02 0.705 0.086 5.728 0.257

3.0 100

4 19.98 0.702 0.085 5.744 0.259
5 20.00 0.708 0.084 5.710 0.255
6 19.97 0.705 0.084 5.710 0.257
8 19.89 0.700 0.085 5.695 0.257

10 19.89 0.700 0.085 5.695 0.257
15 19.55 0.672 0.088 5.715 0.261
50 19.19 0.641 0.091 5.857 0.270

(a) LPIPS (b) PSNR (c) SSIM

Figure 5. Analysis of our samplers on the Sen2 MTC New
dataset. When Schurn = 0, the sampler reduces to be determin-
istic. The upper row shows the effects of Schurn and Snoise by fixing
Stmin = 0 and Stmax ≥ 100. The lower row examines the effects
of Stmin and Stmax with fixed Schurn = 1 and Snoise = 1. Note that
Stmin >= Stmax is excluded as this leads to a deterministic sampler.

optimal results across all metrics when set to 3. For σmax,
the results show that a moderate value (e.g., 100) produces
almost all the best metrics. For N , surprisingly, contrary to
the expectations in generative DMs, a large N yields poor
results, while using only five steps delivers superior results
across most metrics. This finding aligns with [69].
Effect of Samplers. We examine our samplers in Fig. 5 us-
ing the α = 3.0 configuration in Tab. 3, and setting σmin =
0.001, σmax = 100, and N = 5. According to the upper row
of Fig. 5, the stochastic sampler consistently outperforms
the deterministic one in PSNR, with Snoise ∈ [1.000, 1.020]
and Schurn ≥ 6.0 achieving superior scores. However, high
Schurn can negatively affect LPIPS and SSIM. While LPIPS

Table 4. Analysis of L on the Sen2 MTC New dataset.

Sequence Length PSNR↑ SSIM↑MAE↓ SAM↓LPIPS↓

L = 1 16.09 0.493 0.146 7.773 0.440
L = 2 18.10 0.623 0.106 7.313 0.344
L = 3 20.07 0.709 0.084 5.670 0.255

Figure 6. Visualizations of attention masks and their correspond-
ing cloudy images from two cases on the Sen2 MTC New dataset.
Each mask at different time points is normalized to the range [0, 1]
and upsampled using bilinear interpolation to match the size of the
cloudy images for clarity. The left panel shows a case from head
0, while the right panel displays a case from head 15.

is relatively insensitive to Snoise, SSIM declines at higher
Snoise. We suggest using Snoise ≈ 1.000 and Schurn ≈ 1.0 for
balanced metric performance. According to the lower row
of Fig. 5, the optimal results are achieved across all metrics
when Stmin ≈ 0. Generally, Stmax should be relatively large,
such as 80 and 100.
Effect of the Network. We analyze the impact of L on our
network (see Tab. 4), with models trained using the α = 3.0
configuration in Tab. 3 and evaluated via a deterministic
sampler (σmin = 0.001, σmax = 100, and N = 5). Increas-
ing L consistently boosts performance across all metrics,
highlighting the benefits of multi-temporal inputs and our
network’s ability to process them. Fig. 6 visualizes TFSA
attention masks, with high attention scores for cloudless re-
gions and low scores for cloudy ones. Regions occluded by
clouds, characterized by low attention scores, correspond-
ingly exhibit elevated scores in cloudless temporal coun-
terparts. This validates TFSA’s capacity to compensate for
corrupted information by integrating information from spa-
tially equivalent regions across the temporal dimension.

5. Conclusion
We propose a novel MRDM-based CR model named EM-
RDM. It offers a modular framework with updatable mod-
ules and an elucidated design space. With this advantage,
we redesign core MRDM modules to boost CR perfor-
mance, including restructuring the denoiser via a precon-
ditioning technique and improving training and sampling
processes. To achieve multi-temporal CR, a new network
is devised to process sequential images in parallel. These
improvements enable EMRDM to achieve superior results
on mono-temporal and multi-temporal CR benchmarks.
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Supplementary Material

A. Derivation of formulas
A.1. Forward Process
The forward process (i.e., diffusion process) is defined as the SDE in Eq. (3). The goal of this section is to derive the form of
p0t
(
x(t) | x(0),µ

)
, which is also called the perturbation kernel. We can rewrite the form of Eq. (3) into:

dx = −f(t)(µ− x)dt+ g(t)dωt, (20)

whose solution has already been solved in IR-SDE (Eq. (6) in [34]), as

p0t
(
x(t) | x(0),µ

)
= N

(
x(t);mt, vtI

)
, (21)

mt = µ+
(
x(0)− µ

)
e−θ̄0:t , vt =

∫ t

0

g(ξ)
2
e−2θ̄ξ:tdξ, (22)

where θ̄s:t =
∫ t

s
−f(ξ)dξ. Thus,

mt = µ+
(
x(0)− µ

)
exp

(
−
∫ t

0

−f(ξ)dξ
)

= µ+
(
x(0)− µ

)
s(t), (23)

v(t) =

∫ t

0

g(ξ)
2
exp

(
−2
∫ t

ξ

−f(z)dz
)
dξ =

∫ t

0

[
g(ξ) exp

(∫ t

ξ

f(z)dz

)]2
dξ (24)

=

∫ t

0

[
g(ξ) exp

(∫ t

0

f(z)dz −
∫ ξ

0

f(z)dz

)]2
dξ =

∫ t

0


 g(ξ)

exp
(∫ ξ

0
f(z)dz

)
2

exp

(
2

∫ t

0

f(z)dz

)dξ (25)

= exp

(
2

∫ t

0

f(z)dz

)∫ t

0

(
g(ξ)

s(ξ)

)2

dξ = s(t)
2
σ(t)2, (26)

where s(t) and σ(t) is detailed in Eq. (7). Hence, the perturbation kernel can be rewritten as:

p0t
(
x(t) | x(0),µ

)
= N

(
x(t);µ+ s(t) (x (0)− µ) , s(t)2σ(t)2I

)
(27)

= s(t)−dN

(
x(t)

s(t)
;x(0) +

1− s(t)

s(t)
µ, σ(t)2I

)
(28)

= s(t)−dp̃0t (x̃(t) | x̃0(t)) , (29)

where d is the dimension of x, x̃(t) is equal to
x(t)

s(t)
, and x̃0(t) along with p̃0t is defined in Eqs. (5) and (6). Eq. (29) is the

same as Eq. (4).

A.2. Backward Process
As we have mentioned in Sec. 3.1, our forward SDE in Eq. (3) can be viewed as a special case of Eq. (1) proposed by [48],
by defining f(x, t) = f(t)(x − µ). Thus, the backward ODE can also be seen as a special case of Eq. (2). By substituting
the relationship between f(x, t) and f(t) into Eq. (2), we can acquire:

dx =

[
f(t)(x− µ)− 1

2
g(t)

2∇x log pt(x)

]
dt, (30)

1



where we simplify x(t) to x. According to Eq. (7), we can derive the relationship between s(t), σ(t) and f(t),g(t). This has
already been demonstrated in the Eqs. (28) and (34) in [21], which is

f(t) =
ṡ(t)

s(t)
, g(t) = s(t)

√
2σ̇(t)σ(t), (31)

where ṡ(t) and σ̇(t) are the derivatives of s(t) and σ(t), respectively. We can rewrite the form of Eq. (30) by substituting
Eq. (31) into it:

dx =

[
ṡ(t)

s(t)
(x− µ)− s(t)2σ̇(t)σ(t)∇x log pt(x)

]
dt. (32)

Since we define x̃(t) =
x(t)

s(t)
. We can obtain

x(t) = s(t)x̃(t). (33)

We can differentiate both sides of Eq. (33):

ds(t)

dt
x̃(t) + s(t)

dx̃(t)

dt
=

dx(t)

dt
, (34)

ṡ(t)x̃(t)dt+ s(t)dx̃(t) = dx(t). (35)

Substitute Eq. (35) and Eq. (33) into Eq. (32):

ṡ(t)x̃(t)dt+ s(t)dx̃(t) =

[
ṡ(t)

s(t)
(s(t)x̃(t)− µ)− s(t)2σ̇(t)σ(t)∇x log pt(x)

]
dt, (36)

s(t)dx̃(t) =

[
−
ṡ(t)

s(t)
µ− s(t)2σ̇(t)σ(t)∇x log pt(x)

]
dt, (37)

dx̃(t) =

[
−

ṡ(t)

s(t)2
µ− s(t)σ̇(t)σ(t)∇x log pt(x)

]
dt, (38)

The term∇x log pt(x) is the score function, which is predicted by the denoiser Dθ mentioned in Sec. 3.2. However, we aim
to use x̃(t) rather than x(t) as the input of Dθ. Hence, the relationship between∇x̃(t) log pt

(
x̃(t)

)
and∇x log pt(x) should

be clarified. This is demonstrated as follows:

∇x̃(t) log pt
(
x̃(t)

)
= ∇x(t)/s(t) log

[
s(t)−dpt

(
x(t)

s(t)

)]
(39)

= s(t)∇x(t) log
[
pt
(
x(t)

)]
. (40)

Eq. (40) is based on pt
(
x(t)

)
= s(t)−dpt

(
x(t)

s(t)

)
, which can be derived the same as Eq. (29). Eq. (40) can be substituted

into Eq. (38):

dx̃(t) =

[
−

ṡ(t)

s(t)2
µ− σ̇(t)σ(t)∇x̃(t) log pt

(
x̃(t)

)]
dt, (41)

which aligns with Eq. (8), with∇x̃(t) log pt
(
x̃(t)

)
= sθ

(
x̃(t)

)
.

Next, we illuminate the relationship between ∇x̃(t) log pt
(
x̃(t)

)
and the output of Dθ. Therefore, we can directly use the

output of Dθ within the sampling process. Generally, we hope that when Dθ is trained to be ideal, the discrepancy between
the predicted distribution and the target distribution of x̃(t) is minimized. This can be achieved using the score matching
method [17, 48]. Specifically, we regulate the score function calculated from the output of Dθ to match the theoretical target
score function. In other words, the training goal is to let ∇x̃(t) log qt

(
x̃(t)

)
= ∇x̃(t) log pt

(
x̃(t)

)
, where we denote the

target score function as ∇x̃(t) log qt
(
x̃(t)

)
and the target distribution of x̃(t) in the sampling process as qt

(
x̃(t)

)
. Since the
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integrals of qt
(
x̃(t)

)
and pt

(
x̃(t)

)
over the domain of x̃(t) are both equal to one, qt

(
x̃(t)

)
= pt

(
x̃(t)

)
can be derived from

∇x̃(t) log qt
(
x̃(t)

)
= ∇x̃(t) log pt

(
x̃(t)

)
. The training goal can be achieved by optimizing the Fisher divergence [18, 38],

which is indicated by DF . Assuming we are at diffusion step t, DF is given by:

DF

(
qt
(
x̃(t)

)
∥ pt

(
x̃(t)

))
= Eqt(x̃(t))

[
1

2

∥∥∇x̃(t) log pt
(
x̃(t)

)
−∇x̃(t) log qt

(
x̃(t)

)∥∥2] . (42)

Thereby, we aim to demonstrate that optimizing Eq. (42) is theoretically equivalent to optimizing our practical loss function
L
(
Dθ, σ(t)

)
in Eq. (9). Therefore, we can use Eq. (9) instead of Fisher divergence. We select the training objective in Eq. (9)

to align with current generative DMs [14, 21, 42], given that this objective has been proven effective [21]. [51] proposes
another elegant and scalable form of Eq. (42):

DF

(
qt
(
x̃(t)

)
∥ pt

(
x̃(t)

))
= Eqt(x̃(t),x̃0(t))

[
1

2

∥∥∇x̃(t) log pt
(
x̃(t)

)
−∇x̃(t) log qt

(
x̃(t) | x̃0(t)

)∥∥2]+ const, (43)

where const is a constant, and Eqt(x̃(t),x̃0(t)) is the expectation of the joint distribution of x̃(t) and x̃0(t). Here, qt
(
x̃(t) |

x̃0(t)
)

represents the conditional pdf of x̃(t) given x̃0(t). As we have the relationship between x̃(t) and x̃0(t), the concrete
form of∇x̃(t) log qt

(
x̃(t) | x̃0(t)

)
can derived as:

∇x̃(t) log qt
(
x̃(t) | x̃0(t)

)
(44)

= ∇x̃(t) logN
(
x̃(t); x̃0(t), σ(t)

2I
)

(45)

= ∇x̃(t) log

[
(2π)

− d
2
(
det
(
σ(t)2I

) )− 1
2 exp

(
−1

2

(
x̃(t)− x̃0(t)

)T (
σ(t)2I

)−1(
x̃(t)− x̃0(t)

))]
(46)

= ∇x̃(t)

(
−1

2

(
x̃(t)− x̃0(t)

)T (
σ(t)2I

)−1(
x̃(t)− x̃0(t)

))
(47)

= −
x̃(t)− x̃0(t)

σ(t)2
, (48)

which, along with∇x̃(t) log pt
(
x̃(t)

)
= sθ

(
x̃(t)

)
and Eq. (6), can be substituted into Eq. (43):

DF

(
qt
(
x̃(t)

)
∥ pt

(
x̃(t)

))
= Eqt(x̃(t),x̃0(t))

1
2

∥∥∥∥∥sθ(x̃(t))+ x̃(t)− x̃0(t)

σ(t)2

∥∥∥∥∥
2
+ const (49)

= Eqt(x̃(t),x̃0(t))

12
∥∥∥∥∥∥∥∥∥sθ
(
x̃(t)

)
+

x̃(t)− x(0)−
1− s(t)

s(t)
µ

σ(t)2

∥∥∥∥∥∥∥∥∥
2+ const (50)

=
1

2
Eqt(x̃(t),x̃0(t))

 1

σ(t)4

∥∥∥∥∥σ(t)2sθ(x̃(t))+ x̃(t)−
1− s(t)

s(t)
µ− x(0)

∥∥∥∥∥
2
+ const. (51)

To achieve the alignment between the optimization results of Eq. (51) and the training objective in Eq. (9), we can unify the
forms of the two objectives. Concretely, if we let

σ(t)2sθ
(
x̃(t)

)
+ x̃(t)−

1− s(t)

s(t)
µ = Dθ

(
x̃(t);σ(t); c

)
, (52)

then we obtain:

sθ
(
x̃(t)

)
=

1

σ(t)2

(
Dθ

(
x̃(t);σ(t); c

)
+

1− s(t)

s(t)
µ− x̃(t)

)
, (53)

which formally establishes the relationship between the score function sθ
(
x̃(t)

)
and the denoiser output Dθ

(
x̃(t);σ(t); c

)
,

the same as Eq. (10). We can substitute Eq. (52) into Eq. (51):

DF

(
qt
(
x̃(t)

)
∥ pt

(
x̃(t)

))
=

1

2
Eqt(x̃(t),x̃0(t))

[
1

σ(t)4
∥∥Dθ

(
x̃(t);σ(t); c

)
− x(0)

∥∥2]+ const. (54)
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Given that qt (x̃(t), x̃0(t)) = qt
(
x̃(t) | x̃0(t)

)
qt
(
x̃0(t)

)
, we can acquire Eqt(x̃(t),x̃0(t)) [·] = Eqt(x̃0(t))Eqt(x̃(t)|x̃0(t)) [·].

According to Eq. (6), x̃0(t) depends entirely on x(0), µ and s(t). At any fixed diffusion step t, s(t) is a specific determined
value. Furthermore, x(0) and µ are drawn from the data distribution. Thus, we can denote the distribution of x̃0(t) as pdata,
as indicated in Eq. (9). As for qt

(
x̃(t) | x̃0(t)

)
, according to Eq. (5), x̃(t) equals x̃0(t) + n, where n ∼ N

(
0, σ(t)2I

)
.

Hence, given x̃0(t), x̃(t) ∼ N
(
x̃0(t), σ(t)

2I
)
. Based on the aforementioned analysis, we can rewrite Eq. (54) as:

DF

(
qt
(
x̃(t)

)
∥ pt

(
x̃(t)

))
=

1

2
Ex̃0(t)∼pdataEx̃(t)∼N (x̃0(t),σ(t)2I)

[
1

σ(t)4
∥∥Dθ

(
x̃(t);σ(t); c

)
− x(0)

∥∥2]+ const (55)

=
1

2
Ex̃0(t)∼pdataEn∼N (0,σ(t)2I)

[
1

σ(t)4
∥∥Dθ

(
x̃0(t) + n;σ(t); c

)
− x(0)

∥∥2]+ const, (56)

which aligns with the practical training objective in Eq. (9), as x(0) = x̃0(0), differing only by the coefficients
1

2
and

1

σ(t)2
. Note that the coefficients

1

2
and

1

σ(t)2
both remain fixed at any given t. Consequently, at diffusion step t, optimiz-

ing DF

(
qt
(
x̃(t)

)
∥ pt

(
x̃(t)

))
is theoretically equivalent to optimizing L

(
Dθ, σ(t)

)
in Eq. (9), enabling us to directly use

L
(
Dθ, σ(t)

)
rather than DF

(
qt
(
x̃(t)

)
∥ pt

(
x̃(t)

))
as the training objective.

By substituting Eq. (53) into Eq. (41), we obtain the ODE in Eq. (11), which is practically used in our sampling process.

A.3. Preconditioning
In this proof, we use t to represent the diffusion step and l to denote the time or the time point, in order to distinguish between
these two key concepts. Note that l is an integer, while t is continuous. Substituting Eq. (13) into Eq. (18) yields:

L = Eσ,x̃0(t),n

[
λ (σ)

∥∥∥∥mean
({

cskip (σ) x̃
l(t)
}L

l=1

)
+ cout (σ)Fθ − x(0)

∥∥∥∥2
2

]
, (57)

= Eσ,x̃0(t),n

λ(σ)
∥∥∥∥∥∥mean

{cskip(σ)

(
x(0) +

1− s

s
µl + nl

)}L

l=1

+ cout(σ)Fθ − x(0)

∥∥∥∥∥∥
2

2

 , (58)

= E

λ (σ) cout (σ)
2︸ ︷︷ ︸

effective weight

∥∥∥∥∥∥∥∥∥∥∥
Fθ︸︷︷︸

network output

−
1

cout (σ)

x(0)−mean

{cskip (σ)

(
x(0) +

1− s

s
µl + nl

)}L

l=1


︸ ︷︷ ︸

effective training target

∥∥∥∥∥∥∥∥∥∥∥

2

2

 , (59)

where we omit the bracketed arguments in the functional notations s(t), σ(t) and Fθ

({
cin (σ) x̃

l(t)
}L

l=1
; cnoise (σ) ; c

)
for

notational simplicity. The Eσ,x̃0(t),n is simplified to E in Eq. (59). Note that while we have different corrupted images µl

across various time points, there is only a single target x(0).
Adhering to the EDM framework [21], we impose a variance normalization constraint on the training inputs of Fθ(·),

enforcing unit variance preservation at each temporal point l:

Varx(0),µl,nl

[
cin (σ)

(
x(0) +

1− s

s
µl + nl

)]
= 1, (60)

cin (σ)
2 Varx(0),µl,nl

(
x(0) +

1− s

s
µl + nl

)
= 1, (61)

Thus,

cin (σ) =

√√√√√√
1

Varx(0),µl,nl

(
x(0) +

1− s

s
µl + nl

), (62)
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where nl is independent of x(0) and x(0) +
1− s

s
µl. However, x(0) and x(0) +

1− s

s
µl are obviously not independent.

Hence, we can calculate the variance of x(0) +
1− s

s
µl + nl:

Varx(0),µl,nl

(
x(0) +

1− s

s
µl + nl

)
(63)

= Varx(0),µl,nl

(
x(0) +

1− s

s
µl

)
+ Varnl(nl) (64)

= Varx(0) (x (0)) + Varµl

(
1− s

s
µl

)
+ 2Cov

(
x (0) ,

1− s

s
µl

)
+ Varnl(nl) (65)

= Varx(0) (x (0)) +

(
1− s

s

)2

Varµl

(
µl
)
+ 2

1− s

s
Cov

(
x (0) ,µl

)
+ Varnl(nl), (66)

where Cov

(
x (0) ,

1− s

s
µl

)
is the covariance of x (0) and

1− s

s
µl. Since nl is drawn from N (0, σ2I), its variance

Varnl(nl) is equal to σ2. We denote Varx(0) (x (0)) as σ2
data. For simplicity in derivation, we assume:

Assumption A.1. The variance of corrupted images at different time points remains constant, i.e. ∀l ∈ [1, L],Varµl

(
µl
)
=

σ2
mu.

Assumption A.2. The covariance between corrupted images at different time points and the target image x(0) remains
constant, i.e. ∀l ∈ [1, L],Cov

(
x (0) ,µl

)
= σcov.

Under the two assumptions, we can simplify Eq. (66) into

Varx(0),µl,nl

(
x(0) +

1− s

s
µl + nl

)
= σ2

data +

(
1− s

s

)2

σ2
mu + 2

(
1− s

s

)
σcov + σ2. (67)

According to Eq. (62) and Eq. (67), we can get the value of cin (σ) as

cin (σ) =
1√√√√σ2

data +

(
1− s

s

)2

σ2
mu + 2

(
1− s

s

)
σcov + σ2.

(68)

Eq. (68) is the same as Eq. (14), if denoting k =
1− s

s
.

Following EDM [21], we rigorously enforce unit variance normalization on the effective training target in Eq. (59):

Varx(0),µl,nl

 1

cout (σ)

x(0)−mean

{cskip (σ)

(
x(0) +

1− s

s
µl + nl

)}L

l=1

 = 1, (69)

which leads to

cout (σ)
2
= Varx(0),µl,nl

[
x(0)−

cskip (σ)

L

L∑
l=1

(
x(0) +

1− s

s
µl + nl

)]
, (70)

cout (σ)
2
= Varx(0),µl,nl

[(
1− cskip (σ)

)
x(0)−

(
1− s

s

)
cskip (σ)

L

L∑
l=1

µl −
cskip (σ)

L

L∑
l=1

nl

]
, (71)
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where nl is independent of both x(0) and µl, and it is also independent across different time points. Therefore,

cout (σ)
2
= Varx(0),µl

[(
1− cskip (σ)

)
x(0)−

(
1− s

s

)
cskip (σ)

L

L∑
l=1

µl

]
+

(
cskip (σ)

L

)2

Varnl

(
L∑

l=1

nl

)
, (72)

cout (σ)
2
= Varx(0),µl

[(
1− cskip (σ)

)
x(0)−

(
1− s

s

)
cskip (σ)

L

L∑
l=1

µl

]
+

(
cskip (σ)

L

)2 L∑
l=1

(
Varnlnl

)
, (73)

cout (σ)
2
= Varx(0),µl

[(
1− cskip (σ)

)
x(0)−

(
1− s

s

)
cskip (σ)

L

L∑
l=1

µl

]
+

cskip (σ)
2

L
σ2. (74)

Note that

Varx(0),µl

[(
1− cskip (σ)

)
x(0)−

(
1− s

s

)
cskip (σ)

L

L∑
l=1

µl

]
(75)

=
(
1− cskip (σ)

)2
σ2

data +

(
1− s

s

)2(
cskip (σ)

L

)2

Varµl

(
L∑

l=1

µl

)
(76)

− 2
(
1− cskip (σ)

)1− s

s

cskip (σ)

L
Cov

(
(x(0)) ,

L∑
l=1

µl

)
. (77)

We make another assumption for further derivations, as follows:

Assumption A.3. The corrupted images exhibit complete mutual dependence across all time points, i.e. Varµl

(∑L
l=1 µ

l
)
=

Varµl

(
Lµl

)
= L2σ2

mu.

While this assumption is simplistic, as corrupted images at different times are not identical, it remains a valuable approx-
imation for our derivation. This is because images corrupted at different time points can still exhibit significant similarity.
The ablation experiments in Sec. 4.3 further demonstrate the effectiveness of the preconditioning method based on this as-
sumption. Using our three assumptions and Eq. (77), we can derive:

Varx(0),µl

[(
1− cskip (σ)

)
x(0)−

(
1− s

s

)
cskip (σ)

L

L∑
l=1

µl

]
(78)

=
(
1− cskip (σ)

)2
σ2

data +

(
1− s

s

)2(
cskip (σ)

L

)2

L2σ2
mu − 2

(
1− cskip (σ)

)1− s

s

cskip (σ)

L
Lσcov (79)

=
(
1− cskip (σ)

)2
σ2

data +

(
1− s

s

)2

cskip (σ)
2
σ2

mu − 2
(
1− cskip (σ)

)
cskip (σ)

1− s

s
σcov. (80)

Substitute Eq. (80) into Eq. (74), as follows:

cout (σ)
2
=
(
1− cskip (σ)

)2
σ2

data +

(
1− s

s

)2

cskip (σ)
2
σ2

mu − 2
(
1− cskip (σ)

)
cskip (σ)

1− s

s
σcov +

cskip (σ)
2

L
σ2. (81)

Following EDM [21], we then obtain the optimal cskip (σ) by minimizing cout (σ), so that the errors of Fθ can be amplified as
little as possible. This is expressed as:

cskip (σ) = argmincskip(σ)cout (σ) = argmincskip(σ)cout (σ)
2
, (82)

which is obtained by selecting cout (σ) ≥ 0, without loss of generality. To solve the optimal problem in Eq. (82), we set the
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derivative w.r.t. cskip (σ) to zero:

0 =
dcout (σ)

2

dcskip (σ)
, (83)

0 =

d

(1− cskip (σ)
)2
σ2

data +

(
1− s

s

)2

cskip (σ)
2
σ2

mu − 2
(
1− cskip (σ)

)
cskip (σ)

1− s

s
σcov +

cskip (σ)
2

L
σ2


dcskip (σ)

, (84)

0 =

σ2
data +

(
1− s

s

)2

σ2
mu +

σ2

L
+ 2

1− s

s
σcov

 cskip (σ)−

(
σ2

data +
1− s

s
σcov

)
. (85)

Thus, we can acquire the value of cskip (σ):

cskip (σ) =
σ2

data +
1− s

s
σcov

σ2
data +

(
1− s

s

)2

σ2
mu +

σ2

L
+ 2

1− s

s
σcov

, (86)

which aligns with Eq. (15) with k =
1− s

s
.

By substituting Eq. (86) into Eq. (81), we can attain the value of cout (σ):

cout (σ) =

√√√√√√√√√√

(
1− s

s

)2

σ2
muσ

2
data +

σ2

L
σ2

data −

(
1− s

s

)2

σ2
cov

σ2
data +

(
1− s

s

)2

σ2
mu +

σ2

L
+ 2

1− s

s
σcov

, (87)

which is the same as Eq. (16) since k =
1− s

s
.

The value of cnoise (σ) is the same as that in EDM [21], which is obtained based on experiments:

cnoise (σ) =
1

4
ln (σ) . (88)

A.4. Sampling
We present a detailed pseudocode for our stochastic sampler with arbitrary s(t) and σ(t) in Algorithm 3, which can be
regarded as an extension of Algorithm 2. In Algorithm 3, we individually sample the initial states, i.e. xl

0, at each time
point, from line 2 to line 3. Notably, The corrupted images µl differ across different time points. In other words, µl1 ̸= µl2

if l1 ̸= l2 and l1, l2 ∈ [1, L]. From line 4 to line 15, we loop N times to denoise
{
xl
0

}L
l=1

. Specifically, from line 5 to
line 8, we compute the value of γi, and γi is used in line 9 to increase the noise level by adjusting ti to t̂i. Lines 11 to 12
involve performing stochastic perturbation on xl

0 at each time point l, using Eq. (19). In line 14, we use Eq. (11) to evaluate
dx̃(t)

dt
at diffusion step t̂i and time point l. The denoiser Dθ takes images from all time points, i.e.

{
x̂l
i

}L

l=1
, as its input,

since it can denoise sequential images in parallel as discussed in Sec. 3.3. By integrating information across time points,
Dθ achieves improved results, aided by the TFSA module discussed in Sec. 3.3. We then apply an Euler step in line 15 to

calculate the next-step image xl
i+1. Finally, we use a mean operator to reduce the temporal dimension of

{
x̂l
N

}L

l=1
, where{

x̂l
N

}L

l=1
∈ RL×C×H×W and xN ∈ RC×H×W , omitting batch size for clarity.

In Algorithm 3, there are seven key hyperparameters: N , Stmin, Stmax, Snoise, Schurn, σmin, and σmax, as mentioned
in Sec. 3.5. Here we add some details. The Stmin and Stmax define the range for the stochastic sampling steps. Concretely, as
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Algorithm 3 Our stochastic sampler with arbitrary s(t) and σ(t).

1: procedure STOCHASTICSAMPLER(Dθ, {µl}Ll=1, c)
2: for l ∈ {1, 2, · · · , L} do ▷ Individually sample the initial state for L time points

3: sample xl
0 ∼ N (

1− s(t0)

s(t0)
µl, σ(t0)

2I) ▷ xl
0 is a noisy corrupted image

4: for i ∈ {0, 1, · · · , N − 1} do ▷ Repeat the sampling step N times
5: if ti ∈ [Stmin, Stmax] then ▷ [Stmin, Stmax] define the stochastic sampling range

6: γi ←
Schurn

N
▷ Schurn and N determine γi

7: else ▷ For ti outside the range [Stmin, Stmax], use deterministic sampling
8: γi ← 0 ▷ Setting γi = 0 leads to deterministic sampling

9: t̂i ← ti + γiti ▷ γi regulates the extent of stochastic perturbation
10: for l ∈ {1, 2, · · · , L} do ▷ Individually perform denoising for L time points
11: sample ϵi ∈ N

(
0, S2

noiseI
)

▷ Sample the noise for stochastic perturbation

12: x̂l
i ← xl

i +

(
1− s(t̂)

s(t̂i)
−

1− s(ti)

s(ti)

)
µl +

√
σ(t̂i)

2 − σ(ti)
2
ϵi ▷ Use Eq. (19) for stochastic perturbation

13: for l ∈ {1, 2, · · · , L} do ▷ Individually take Euler step for L time points

14: dl
i ← −

ṡ(t̂i)

s(t̂i)
2µ−

σ̇(t̂i)

σ(t̂i)

[
Dθ

({
x̂l
i

}L

l=1
;σ(t̂i); c

)
+

1− s(t̂i)

s(t̂i)
µ− x̂l

i

]
▷ Use Eq. (11)

15: xl
i+1 ← x̂l

i + (ti+1 − t̂i)d
l
i ▷ Take an Euler step from t̂i to ti+1

16: xN = mean
(
{xl

N}Ll=1

)
▷ Use the mean operator to collapse the temporal dimension and calculate the final result

17: return xN ▷ The result is a single restored image

shown from line 5 to line 8, if ti falls outside [Stmin, Stmax], γi is set to 0. As a result, t̂i is set to ti (line 9), leading to x̂l
i = xl

i,
thus reducing the stochastic sampler to its deterministic counterpart. If ti is within [Stmin, Stmax], regular stochastic sampling
occurs. Schurn, along with N , controls the value of γi in line 6, influencing the extent of stochastic perturbation in line 12.
This approach is improved from the stochastic sampler in EDM [21] by removing the γi upper limit (

√
2− 1 in EDM). Since

our method yields larger γi due to small N , removing this limit can prevent restricting randomness. The effectiveness of this
modification is demonstrated in Sec. 4.3.

B. Detailed Related Work
In Sec. 2, we provided a brief overview of related work. Here, we offer a more comprehensive introduction.

B.1. Cloud Removal
Traditional Methods. Traditional CR methods, with the use of mathematical transform [15, 56], physical principles [52, 55],
information cloning [29, 43], offer great interpretability. However, they tend to underperform in comparison to deep learning
techniques, which limits their practical applications.
GAN-based Methods. Current deep learning-based CR methods primarily use GANs, with cGANs [37] and Pix2Pix [19] as
the vanilla paradigm. In CR tasks [1, 9, 12], both cloudy images and noise are fed into the generator to produce a cloudless
image. The ground truth or predicted cloudless images, along with the cloudy image, are fed into the discriminator, which
determines whether the input includes the ground truth image. Through adversarial training, the generator learns to produce
nearly real cloudless images. To improve cGANs for CR tasks, SpA GAN [40] introduces a Spatial Attentive Network
(SPANet) that incorporates a spatial attention mechanism in its generator to improve CR performance. The Simulation-
Fusion GAN [10] further improves CR performance by integrating SAR images. It operates in two stages: first, it employs a
specific convolutional neural network (CNN) to convert SAR images into optical images; then, it fuses the simulated optical
images, SAR images, and original cloudy optical images using a GAN-based framework to reconstruct the corrupted regions.
TransGAN-CFR [26] proposes an innovative transformer-based generator with a hierarchical encoder-decoder network. This
design includes transformer blocks [50] using a non-overlapping window multi-head self-attention (WMSA) mechanism and
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Table 5. Details of our best training and testing configurations.

CUHK-CR1 CUHK-CR2 SEN12MS-CR Sen2 MTC New

Parameters 39.13M 39.13M 39.13M 148.88M

Training Steps 22,500 26,300 446,700 64,141
Training Epochs 500 470 46 500
Batch Size 4 2 2 8
Precision tf32 tf32 tf32 tf32
Training Hardware 3 RTX 3090 4 RTX 4090 4 RTX 4090 4 RTX 4090

In Channels 8 (= 4 + 0 + 4) 8 (= 4 + 0 + 4) 28 (= 13 + 2 + 13) 7 (= 3 + 1 + 3)
Out Channels 4 4 13 3

Patch Size 1 1 1 4
Levels (Local + Global Attention) 2 + 2 2 + 2 2 + 2 2 + 1
Depth [2, 2, 2, 2] [2, 2, 2, 2] [2, 2, 2, 2] [2, 2, 16]
Widths [128, 256, 384, 768] [128, 256, 384, 768] [128, 256, 384, 768] [256, 512, 768]
FFN Intermediate Widths [256, 512, 768, 1536] [256, 512, 768, 1536] [256, 512, 768, 1536] [512, 1024, 1536]
Attention Heads (Width / Head Dim) [2, 4, 6, 12] [2, 4, 6, 12] [2, 4, 6, 12] [4, 8, 12]
Attention Head Dim 64 64 64 64
Neighborhood Kernel Size 7 7 7 7
Dropout Rate [0.0, 0.0, 0.0, 0.1] [0.0, 0.0, 0.0, 0.1] [0.0, 0.0, 0.0, 0.1] [0.0, 0.0, 0.0, 0.0]

Mapping Depth 2 2 2 2
Mapping Width 768 768 768 768
Mapping FFN Intermediate Width 1536 1536 1536 1536
Mapping Dropout Rate 0.1 0.1 0.1 0.1

α 3.0 3.0 3.0 3.0
σdata 1.0 1.0 1.0 1.0
σmu 1.0 1.0 1.0 1.0
σcov 0.9 0.9 0.9 0.9
Pmean in Algorithm 1 -1.4 -1.2 -1.2 -1.4
Pstd in Algorithm 1 1.4 1.2 1.2 1.4

Optimizer AdamW AdamW AdamW AdamW
Learning Rate 1e-4 1e-4 1e-4 1e-4
Betas [0.9, 0.999] [0.9, 0.999] [0.9, 0.999] [0.9, 0.999]
Eps 1e-8 1e-8 1e-8 1e-8
Weight Decay 1e-2 1e-2 1e-2 1e-2

EMA Decay 0.9999 0.9999 0.9999 0.9999

Sampling Steps N 4 4 5 5
σmin 0.001 0.001 0.001 0.001
σmax 100 100 100 100
Schurn 0.1 2.5 5.0 1.0
Snoise 0.995 1.0 1.023 1.0
Stmin 0.0 0.0 0.0 0.0
Stmax 100000000 100000000 100000000 100.0

a modified feed-forward network (FFN). SAR images are also integrated with cloudy images in this network, and a new
triplet loss is introduced to improve CR capabilities.
DM-based Methods. Diffusion Models (DMs), a new type of generative model, have outperformed GANs in image gen-
eration tasks [4] and shown potential in image restoration tasks [27], including CR. Current diffusion-based CR methods
mostly adhere to the basic DM framework. Concretely, DDPM-CR [20] leverages the DDPM [14] architecture to integrate
both cloudy optical images and SAR images to extract DDPM features. The features are then used for cloud removal in
the cloud removal head. DiffCR [64] introduces an efficient time and condition fusion block (TCFBlock) for building the
denoising network and a decoupled encoder for extracting features from conditional images (e.g. SAR images) to guide the
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DM generation process. SeqDM [62] is designed for multi-temporal CR tasks. It comprises a new sequential-based training
and inference strategy (SeqTIS) that processes sequential images in parallel. It also extends vanilla DMs to multi-modal
diffusion models (MmDMs) for incorporating the additional information from auxiliary modalities (e.g. SAR images).
Non-Generative Methods. Some non-generative methods have also been proposed for CR, serving as alternatives to GAN-
based and DM-based methods. DSen2-CR [36] employs a super-resolution ResNet [25, 28] and can function as a multi-modal
model as it can process optical images and SAR images together by concatenating them as inputs. GLF-CR [54], another
multi-modal model, introduces a global-local fusion network to use the additional SAR information. Specifically, it is a
dual-stream network where SAR image information is hierarchically integrated into feature maps to address cloud-corrupted
areas, using global fusion for relationships among local windows and local fusion to transfer SAR features. UnCRtainTS [8]
is designed for both multi-temporal and mono-temporal CR tasks. It includes an encoder for all time points, an attention-based
temporal aggregator for fusing sequential observations, and a mono-temporal decoder. The model incorporates multivariate
uncertainty quantification to enhance CR capabilities. The version with uncertainty quantification is called UnCRtainTS σ,
as shown in Tab. 1, while the one with simple L2 loss is named UnCRtainTS L2, as shown in Fig. 4.

B.2. Diffusion Models
Generative DMs DMs are initially applied to image generation. The vanilla DM, known as DDPM, is proposed by [14].
Concurrently, Song et al. propose NCSN [47], a generative model similar to DDPM, by estimating gradients of the data dis-
tribution. Song et al. further clarify the underlying principles of DMs using score matching methods [48], unifying DDPM as
the VP condition and NCSN as the VE condition. EDM [21] criticizes that the theory and practice of conventional generative
DMs [48] are unnecessarily complex and simplify DMs by presenting a clear design space to separate the design choices
of various modules, integrating both VP and VE DMs. They also redesign most key modules within their EDM to further
enhance the generation abilities. Additional improvements include faster sampling [32, 33], new denoising networks [2, 41],
and adjusted training loss weights [13]. Our denoising network is based on HDiT [2], which employs a scalable hourglass
transformer as the denoising network, effectively generating high-quality images in the pixel space.
Restoration DMs Building on the success of DMs in image generation, researchers have investigated their application in
image restoration [27]. The restoration DM can be categorized into supervised and zero-shot learning methods, as discussed
in Sec. 2. The first type is more relevant to our work, as our method adopts the supervised learning paradigm. Early
supervised methods condition DMs on low-quality reference images by simply concatenating them with noise as the input to
the denoising network, as demonstrated in SR3 [45] and Palette [44]. Later improvements focus on conditioning the models
on pre-processed reference images and features, as seen in CDPMSR [39] and IDM [11]. A significant advancement comes
from methods that modify the diffusion process itself to incorporate conditions. Specifically, IR-SDE [34] introduces a mean-
reverting SDE to define the forward process and derives the corresponding backward SDE, enabling generation from noisy
corrupted images rather than pure noise and leading to improved restoration results. Refusion [35] enhances this approach
by optimizing network architecture, incorporating VAE [22] for image compression, etc. ResShift [59] and RDDM [31] both
adopt the DDPM framework (i.e. the VP condition). Similar to IR-SDE, they modify the forward process to incorporate
both noise and residuals, facilitating diffusion from target images to noisy corrupted images. Notably, within the backward
process, ResShift uses a single denoising network, while RDDM employs separate networks to predict noise and residuals.
Similar strategies have also been employed by InDI [3], I2SB [30], etc.

C. Experiments
C.1. Implementation Details
C.1.1. Datasets
The CUHK-CR1 and CUHK-CR2 datasets, introduced by [49], consist of images captured by the Jilin-1 satellite with a size
of 512×512. CUHK-CR1 contains 668 images of thin clouds, while CUHK-CR2 includes 559 images of thick clouds. These
two datasets collectively form the CUHK-CR dataset. With an ultra-high spatial resolution of 0.5 m, the images encompass
four bands: RGB and near-infrared (NIR). Following [49], the CUHK-CR1 dataset is split into 534 training and 134 testing
images, while CUHK-CR2 is divided into 448 training and 111 testing images. The images are in PNG format, with integer
values in the range [0, 255].

The SEN12MS-CR dataset, introduced by [6], contains coregistered multi-spectral optical images with 13 bands from
Sentinel-2 satellite and SAR images with 2 bands from Sentinel-1 satellite. Collected from 169 non-overlapping regions of
interest (ROIs) across continents, each averaging approximately 52 × 40 km2 in size, the scenes of ROIs are divided into
256 × 256 pixel patches, with 50% spatial overlap. We use 114,050 images for training, 7,176 images for validation, and
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Cloudy TargetNIR MemoryNet MSDA-CR DE-MemoryNet DE-MDSA Ours

Figure 7. Additional visual results on the CUHK-CR1 dataset.

Cloudy TargetNIR MemoryNet MSDA-CR DE-MemoryNet DE-MDSA Ours

Figure 8. Additional visual results on the CUHK-CR2 dataset.

7,899 images for testing. The dataset split follows previous works [6, 8].
The Sen2 MTC New dataset, introduced by [16], consists of coregistered RGB and IR images across approximately 50

non-overlapping tiles. Each tile includes around 70 pairs of cropped 256× 256 pixel patches with pixel values ranging from
0 to 10, 000. Following [16], the dataset is divided into 2, 380 images for training, 350 for validation, and 687 for testing.

C.1.2. Pre-Processing
As with common deep learning methods, images must be pre-processed before being input into our neural network. Given
that datasets vary in their characteristics, we apply distinct pre-processing techniques to each one, following established
practices. Below, we provide a detailed explanation.
The CUHK-CR1 and CUHK-CR2 datasets. Following [49], we resize images from 512× 512 pixels to 256× 256 pixels.
Subsequently, the pixel values are rescaled to a range of [−1, 1].
The Sen2 MTC New dataset. Following [16], the pixel values of images are initially scaled to the [0, 1] range by dividing
by 10, 000, then normalized using a mean of 0.5 and a standard deviation of 0.5. For the training split, data augmentation
includes random flips and a 90-degree rotation every four images.
The SEN12MS-CR dataset. Following [7], the pixel values of SAR and optical images are clipped to the ranges of [−25, 0]
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Cloudy SAR Target McGAN SpA GAN DSen2-CR GLF-CR UnCRtainTS L2 Ours

Figure 9. Additional visual results on the SEN12MS-CR dataset. As GLF-CR [54] can only process 128 × 128 images, unlike others
(256 × 256), we divide each image into four parts, process them individually, and merge the results. Optical image brightness is linearly
enhanced for visualization.

Target McGAN Pix2Pix STGAN CTGAN PMAA UnCRtainTS σ DiffCR Ours l=1  l=2  l=3
Cloudy and IR

Figure 10. Additional visual results on the Sen2 MTC New dataset.

and [0, 10000], respectively. However, we rescale the pixel values of all images to the range of [−1, 1] to achieve centrosym-
metric pixel values, which is different from [7].

C.1.3. Configuration

The optimal configuration is detailed in Tab. 5. The number of input channels is the sum of channels from noisy corrupted
images, auxiliary modal images, and original corrupted images, as shown in Fig. 3. The table lists these channels as (input
noisy corrupted image channels + input auxiliary modal image channels + input original corrupted image channels). For
example, in the Input Channels row in Tab. 5, 28(= 13 + 2 + 13) means that the noisy corrupted image has 13 channels,
the auxiliary modal image has 2 channels and the original corrupted image has 13 channels. Notably, in CUHK-CR1 and
CUHK-CR2 datasets, we reconstruct RGB and NIR channels following established methods, incorporating the NIR channel
into the noisy corrupted image input rather than treated as auxiliary data. Consequently, the auxiliary modal image channel
count for these datasets is zero.

C.1.4. Evaluation Metrics in Theory

To comprehensively evaluate the performance, we employ multiple metrics including peak signal-to-noise ratio (PSNR),
structural similarity index measure (SSIM) [53], mean absolute error (MAE), spectral angle mapper (SAM) [24], and learned
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Cloudy l=1 Cloudy l=2 Cloudy l=3 IR l=1 IR l=2 Target deterministic stochasticIR l=3

Figure 11. Visual results generated by the stochastic sampler and the deterministic sampler. For the deterministic sampler, we set N = 5,
σmin = 0.001 and σmax = 100. For the stochastic sampler, we set N = 5, σmin = 0.001, σmax = 100, Schurn = 1.0, Snoise = 1.0, Stmin = 0
and Stmax = 100.

(3.0, 60.0, 5) (3.0, 80.0, 5) (3.0, 100.0, 5) (3.0, 150.0, 5) (3.0, 200.0, 5) (3.0, 300.0, 5)

(3.0, 100.0, 4) (3.0, 100.0, 5) (3.0, 100.0, 6) (3.0, 100.0, 10) (3.0, 100.0, 15) (3.0, 100.0, 50)

(0.5, 100.0, 5) (0.8, 100.0, 5) (1.0, 100.0, 5) (2.0, 100.0, 5) (3.0, 100.0, 5) (4.0, 100.0, 5)Cloudy l=1Cloudy l=1Target

Cloudy l=2

Cloudy l=3 IR l=3

IR l=2

IR l=1

Figure 12. Visual results under different configurations of (α, σmax, N ). For example, (3.0, 100.0, 5) represents the restored results with
α = 3.0, σmax = 100.0 and N = 5.

perceptual image patch similarity (LPIPS) [60]. The precise computational formulations of these metrics are as follows:

PSNR(y, ŷ) = 20 log10

(
1

RMSE(y, ŷ)

)
, (89)

SSIM(y, ŷ) =
(2µyµŷ + c1) (2σyŷ + c2)(

µ2
y + µ2

ŷ + c1

)(
σ2
y + σ2

ŷ + c2

), (90)

MAE(y, ŷ) =
1

C ·H ·W

C∑
c=1

H∑
h=1

W∑
w=1

|yc,h,w − ŷc,h,w|, (91)

SAM(y, ŷ) = cos−1

 ∑C
c=1

∑H
h=1

∑W
w=1 yc,h,w · ŷc,h,w√∑C

c=1

∑H
h=1

∑W
w=1 y

2
c,h,w ·

∑C
c=1

∑H
h=1

∑W
w=1 ŷ

2
c,h,w

 , (92)

LPIPS(y, ŷ) =
∑
i

1

Hi ·Wi

H∑
h=1

W∑
w=1

∥∥∥wi ⊙
(
ŷi
h,w − yi

h,w

)∥∥∥2
2

(93)
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where

RMSE(y, ŷ) =

√√√√ 1

C ·H ·W

C∑
c=1

H∑
h=1

W∑
w=1

(
yc,h,w − ŷc,h,w

)2
. (94)

Here, we denote the predicted image as ŷ and the ground truth image as y. with channel number C, height H and width W .
The notation yc,h,w and ŷc,h,w refers to a specific pixel in y and ŷ, indicated by subscript c, h, w. In Eq. (90), µy and µŷ

represent the means, and σy and σŷ are the standard deviations of y and ŷ, respectively. The covariance is symbolized by
σyŷ . The constants c1 and c2 stabilize the calculations. To compute LPIPS [60], a pre-trained network F processes y and ŷ
to derive intermediate embeddings across multiple layers. The activations are normalized, scaled by a vector w, and the L2
distance between embeddings of y and ŷ is calculated and averaged over spatial dimensions and layers as the final LPIPS
value, as shown in Eq. (93). In Eq. (93), i indicates the layer of F , with Hi, Wi, and wi being the height, width, and scaling
factor at the layer i. The embeddings at the position (h,w) and the layer i are denoted as ŷi

h,w and yi
h,w. We use the official

implementations of [60] to calculate the value of LPIPS.

C.1.5. Evaluation Metrics in Practice
Although the theoretical methods for these evaluation metrics are consistent across datasets, practical calculations may vary
due to pre-processing, post-processing, etc. To ensure a fair comparison, we apply different computing methods for each
dataset, in line with prior research. Detailed explanations for each dataset are provided here.
The CUHK-CR1 and CUHK-CR2 datasets. Following [49], we scale the pixel values of the restored and ground truth
images, i.e. ŷ and y, to the range [0, 255], and clamp any out-of-range values. These pixel values are then converted to
unsigned integers. PSNR is calculated using all channels, while SSIM and LPIPS are first calculated for each channel and
then averaged. To calculate LPIPS, we employ a pre-trained AlexNet [23] as F .
The Sen2 MTC New dataset. We adopt the DiffCR [64] approach by rescaling the pixel values of the restored and ground
truth images to the range [0, 1000], clipping values outside [0, 2000], and then rescaling back to [0, 1]. These processed
images are used to compute PSNR and SSIM across all channels. For LPIPS, the input images are further rescaled to [−1, 1]
and processed using a pre-trained AlexNet [23] as F .
The SEN12MS-CR dataset. All the images are rescaled to [0, 1]. Then, the rescaled images are used to compute PSNR,
SSIM, MAE, and SAM, with all channels used.

C.1.6. Reproducing Details
For closed-source methods, we use the metric values they report. In contrast, for certain open-source methods, we implement
the algorithms ourselves and present visual results in Fig. 4. When implementing previous methods, if pre-trained weights are
available, we directly use them; otherwise, we retrain the models from scratch. Below, we briefly outline the implementation
details of the reproduced methods.
The CUHK-CR1 and CUHK-CR2 datasets. The CUHK-CR1 and CUHK-CR2 datasets are relatively new, with limited
prior research [49]. The authors evaluate five existing methods: SpA-GAN [40], AMGAN-CR [57], CVAE [5], Memo-
ryNet [61], and MSDA-CR [58], alongside their proposed methods, DE-MemoryNet and DE-MSDA [49], on these two
dataset. In [49], metrics for all methods are reported, with pre-trained weights provided only for MemoryNet and MSDA-
CR. Consequently, we use these weights and retrain DE-MemoryNet and DE-MSDA to present visual results in Fig. 4.
DE-MSDA is excluded from Fig. 4 as it performs worse than DE-MemoryNet, despite being introduced in the same study.
The SEN12MS-CR dataset. As McGAN [9] and SpA GAN [40] do not have pre-trained weights for this dataset, we
retrain them and present the visual results in Fig. 4. In contrast, pre-trained weights for DSen2-CR [36], GLF-CR [54],
and UnCRtainTS [8] are available and have also been used for visualization in Fig. 4. Notably, GLF-CR [54] operates on
128 × 128 images, while other methods use 256 × 256 images. To ensure consistency, we divide each image into four
segments, process them independently, and subsequently merge them for visualization, as shown in Fig. 4. The performance
metrics for all previous methods on this dataset are cited from [8] and [64].
The Sen2 MTC New dataset. Metrics values are cited from [16], [63], and [64]. We retrain McGAN [9], Pix2Pix [19],
STGAN [46] and UnCRtainTS [8], while using pre-trained weights of CTGAN [16], PMAA [63], and DiffCR [64] for
visualization in Fig. 4.

C.2. Efficiency Analysis
We first present a comparative analysis of parameter counts (Params) and multiply-accumulate operations (MACs) of our
proposed method against recent state-of-the-art approaches. in Tab. 6 across the four datasets. Our analysis excludes early
methods due to their significantly inferior performance compared to EMRDM and the unavailability or irreproducibility of
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Table 6. The Comparison of Params (the number of parameters) and MACs (multiply-accumulate operations).

(a) SEN12MS-CR GLF-CR UnCRtainTS L2 DiffCR EMRDM
Params (M) 14.827 0.519 22.96 39.13
MACs (G) 245.28 28.02 29.37 83.57

(b) CUHK-CR MemoryNet MSDA-CR DE EMRDM
Params (M) 3.64 3.91 36.80 39.13
MACs (G) 548.65 53.45 199.15 83.33

(c) Sen2 MTC New STGAN CTGAN CR-TS Net PMAA UnCRtainTS DDPM-CR DiffCR EMRDM
Params (M) 231.93 642.92 38.68 3.45 0.56 445.44 22.91 148.88
MACs (G) 1094.94 632.05 7602.97 92.35 37.16 852.37 45.86 74.39

their detailed implementations. All MACs are computed with a batch size of 1 and an input image resolution of 256× 256 to
ensure fair comparisons. It should be noted that although GLF-CR [54] typically operates on 128 × 128 resolution images,
we evaluated it at 256 × 256 resolution for efficiency analysis to maintain consistency across comparisons. Moreover, for
DiffCR, which lacks official implementation details for the SEN12MS-CR dataset, we reproduce it on this dataset based
on the description outlined in [64] and report the corresponding Params and MACs in Tab. 6. The entries labeled ”DE”
in Tab. 6 denote DE-MemoryNet and DE-MSDA [49], which share identical Params and MACs. The results of efficiency
analysis demonstrate that EMRDM achieves performance gains with reasonable increments in Params and MACs, particularly
for mono-temporal tasks. While multi-temporal tasks necessitate additional parameters of EMRDM to effectively model
complex temporal dependencies in image sequences, the corresponding MACs remain within reasonable bounds for real-
world applications.

We further analyzed the training and sampling time of EMRDM across the four datasets. For standardization, we use
the configurations in Tab. 5 and measured training time per batch with batch size unchanged and sampling time per image
with batch size changed to 1. All experiments are conducted on a single NVIDIA RTX 4090 GPU to ensure fair compar-
isons. Per-batch training times measure 1,410.5 ms (CUHK-CR1), 1,237.7 ms (CUHK-CR2), 1,230.5 ms (SEN12MS-CR),
and 204.7 ms (Sen2 MTC New), with per-image sampling times of 131.2 ms (CUHK-CR1), 128.0 ms (CUHK-CR2), 136.4
ms (SEN12MS-CR), and 173.1 ms (Sen2 MTC New). These timing measurements are hardware-dependent and may fluc-
tuate. Hence, we report only mean values. Notable, sampling time is particularly significant since training occurs only
once, while sampling is performed repeatedly in practical CR applications. The measured sampling times demonstrate that
EMRDM meets real-time requirements for CR applications, a critical factor for remote sensing, while delivering significant
performance advantages.

C.3. Additional Results
This section presents additional results, including visual examples from the CUHK-CR1, CUHK-CR2, SEN12MS-CR, and
Sen2 MTC New datasets in Fig. 7, Fig. 8, Fig. 9, and Fig. 10, respectively. Visual comparisons using our stochastic and deter-
ministic samplers are shown in Fig. 11. Additionally, results under varying settings of (α, σmax, N) are provided in Fig. 12.
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